Selecting a Stencil Frame


Reading time ( words)

If you have been following my Short Scoop series, you will recall that we have focused on different types of stencils and their applications and what to look for when selecting a stencil. We talked about the importance of the blade in the printing process, various stencil fabrication techniques, and specialty coatings that drive paste release, particularly for fine pitch components. Another part of stencil selection that is often overlooked, but that is also quite necessary, is the selection of the frame. This month’s Short Scoop talks about the stencil frame and some of the options to consider when specifying the frame required for your printing process and needs.

What is a Frame?

For a stencil, the frame primarily provides a rigid support structure that allows the stencil to be used with your printing equipment. Without the frame, the stencil is no more than a thin foil with limited use due to the flexure of the stencil when left unsupported. The frame enables the foil to be stretched taut so that the stencil can gasket to the board, and thus solder paste will release properly from the stencil onto the circuit board.

Frames can range from large to small and thick to thin and be cast aluminum, welded aluminum, space-saving, or frameless systems, including VectorGuard™ and QTS. They can range from 8” x10” die cast (DC) frames to 29” x 29” tubular frames with many options in between. It is usually the printer type and printing equipment that determines the overall frame dimensions/size to be used. Besides choosing the frame type that fits your printer, there are additional options. Frames can usually be purchased either from the printer manufacturer or from the stencil manufacturer.

The overall size of a stencil frame is dictated largely by the size of the outside diameter of the stencil itself. Frame specifications should take into account the stencil’s inside dimension, outside dimension, corner hole locations (if applicable), hole thread size, frame thickness, flat and parallel dimensions, and the maximum print area. If you have a lot of option variability with the printer you are using, make sure to pick a frame size large enough to accommodate the foil size (stencil size), the glue border to mount the foil, and allow an additional 2” square spacing around the outside of the image which is necessary to print successfully. 

Read the full column here.


Editor's Note: This column originally appeared in the June 2014 issue of SMT Magazine.

Share

Print


Suggested Items

Advancement of SPI Tools to Support Industry 4.0 and Package Scaling

08/06/2019 | A. Prasad, L. Pymento, S.R. Aravamudhan, and C. Periasamy, Intel Corp.
This paper evaluates the current state of inline SPI tools from multiple vendors for solder paste measurement accuracy and capability. It discusses a measurement capability analysis that was carried out against a golden metrology tool across a range of volume deposits, and highlights the results from the study.

Practical Implementation of Assembly Processes for Low Melting Point Solder Pastes (Part 2)

07/24/2019 | Adam Murling, Miloš Lazić, and Don Wood, Indium Corporation; and Martin Anselm, Rochester Institute of Technology
In the last three to five years, there has been a resurgence of interest in the use of low melting point alloys for SMT applications. Typically, the compositions are around the eutectic bismuth-tin alloy, perhaps with additions of other elements to increase the robustness of certain alloy properties. Now, there are several new products on the market and numerous ongoing reliability projects in industry consortia.

Practical Implementation of Assembly Processes for Low Melting Point Solder Pastes (Part 1)

07/16/2019 | Adam Murling, Miloš Lazić, and Don Wood, Indium Corporation; and Martin Anselm, Rochester Institute of Technology
Since 2006 and the implementation of the RoHS directive, the interest in bismuth-tin solder alloys—whose melting point around 140°C is very desirable because it allows for the use of lower temperature laminate materials and reduces thermal stress on sensitive components—has only increased as the industry has searched for Pb-free alternatives to the chosen standard, SAC305, which melts at considerably higher temperatures than the incumbent tin-lead alloys.



Copyright © 2019 I-Connect007. All rights reserved.